void gameRun(int k) { bool winflag = false; switch (k) { case 0 : for (int i = 0; i < 4; ++i) for (int j = 0; j < 4; ++j) if (combine(i,j,k)) winflag = true; break; case 1 : for (int j = 3; j >= 0; --j) for (int i = 0; i < 4; ++i) if (combine(i,j,k)) winflag = true; break; case 2 : for (int i = 3; i >= 0; --i) for (int j = 0; j < 4; ++j) if (combine(i,j,k)) winflag = true; break; case 3 : for (int j = 0; j < 4; ++j) for (int i = 0; i < 4; ++i) if (combine(i,j,k)) winflag = true; break; }
// 判断胜负条件 if (winflag) { gameWin(); return; } if (!randomNew()) { gameOver(); }
// 其余参数 要传入的参数 std::vector<Value*> args; for (Node* p = node->getNext(); p != NULL; p = p->getNext()) { Value* v = p->codeGen(context); // 递归地生成参数 if (v != NULL) args.push_back(v); }
// 其余参数 要传入的参数 std::vector<Value*> args; for (Node* p = node->getNext(); p != NULL; p = p->getNext()) { Value* v = p->codeGen(context); if (v != NULL) args.push_back(v); }
; Declare the string constant as a global constant. @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
; External declaration of the puts function declare i32 @puts(i8* nocapture) nounwind
; Definition of main function define i32 @main() { ; i32()* ; Convert [13 x i8]* to i8 *... %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
; Call puts function to write out the string to stdout. call i32 @puts(i8* %cast210) ret i32 0 }
SET (CMAKE_CXX_COMPILER_ENV_VAR "clang++") SET (CMAKE_CXX_FLAGS "-std=c++11") SET (CMAKE_CXX_FLAGS_DEBUG "-g") SET (CMAKE_CXX_FLAGS_MINSIZEREL "-Os -DNDEBUG") SET (CMAKE_CXX_FLAGS_RELEASE "-O4 -DNDEBUG") SET (CMAKE_CXX_FLAGS_RELWITHDEBINFO "-O2 -g")
# Find the libraries that correspond to the LLVM components # that we wish to use llvm_map_components_to_libnames(llvm_libs support core irreader executionengine interpreter mc mcjit bitwriter x86codegen target)
# Link against LLVM libraries target_link_libraries(redapple ${llvm_libs})
SET (CMAKE_CXX_FLAGS "-std=c++11") SET (CMAKE_CXX_FLAGS_DEBUG "-g") SET (CMAKE_CXX_FLAGS_MINSIZEREL "-Os -DNDEBUG") SET (CMAKE_CXX_FLAGS_RELEASE "-O4 -DNDEBUG") SET (CMAKE_CXX_FLAGS_RELWITHDEBINFO "-O2 -g")
# Find the libraries that correspond to the LLVM components # that we wish to use llvm_map_components_to_libnames(llvm_libs Core ExecutionEngine Interpreter MC Support nativecodegen)
# Link against LLVM libraries target_link_libraries(llvm_test ${llvm_libs})
//===-- examples/HowToUseJIT/HowToUseJIT.cpp - An example use of the JIT --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This small program provides an example of how to quickly build a small // module with two functions and execute it with the JIT. // // Goal: // The goal of this snippet is to create in the memory // the LLVM module consisting of two functions as follow: // // int add1(int x) { // return x+1; // } // // int foo() { // return add1(10); // } // // then compile the module via JIT, then execute the `foo' // function and return result to a driver, i.e. to a "host program". // // Some remarks and questions: // // - could we invoke some code using noname functions too? // e.g. evaluate "foo()+foo()" without fears to introduce // conflict of temporary function name with some real // existing function name? // //===----------------------------------------------------------------------===//
LLVMContext Context; // Create some module to put our function into it. std::unique_ptr<Module> Owner = make_unique<Module>("test", Context); Module *M = Owner.get();
// Create the add1 function entry and insert this entry into module M. The // function will have a return type of "int" and take an argument of "int". // The '0' terminates the list of argument types. Function *Add1F = cast<Function>(M->getOrInsertFunction("add1", Type::getInt32Ty(Context), Type::getInt32Ty(Context), (Type *)0));
// Add a basic block to the function. As before, it automatically inserts // because of the last argument. BasicBlock *BB = BasicBlock::Create(Context, "EntryBlock", Add1F);
// Create a basic block builder with default parameters. The builder will // automatically append instructions to the basic block `BB'. IRBuilder<> builder(BB);
// Get pointers to the constant `1'. Value *One = builder.getInt32(1);
// Get pointers to the integer argument of the add1 function... assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg Argument *ArgX = Add1F->arg_begin(); // Get the arg ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
// Create the add instruction, inserting it into the end of BB. Value *Add = builder.CreateAdd(One, ArgX);
// Create the return instruction and add it to the basic block builder.CreateRet(Add);
// Now, function add1 is ready.
// Now we're going to create function `foo', which returns an int and takes no // arguments. Function *FooF = cast<Function>(M->getOrInsertFunction("foo", Type::getInt32Ty(Context), (Type *)0));
// Add a basic block to the FooF function. BB = BasicBlock::Create(Context, "EntryBlock", FooF);
// Tell the basic block builder to attach itself to the new basic block builder.SetInsertPoint(BB);
// Get pointer to the constant `10'. Value *Ten = builder.getInt32(10);
// Pass Ten to the call to Add1F CallInst *Add1CallRes = builder.CreateCall(Add1F, Ten); Add1CallRes->setTailCall(true);
// Create the return instruction and add it to the basic block. builder.CreateRet(Add1CallRes);
// Now we create the JIT. ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
outs() << "We just constructed this LLVM module:\n\n" << *M; outs() << "\n\nRunning foo: "; outs().flush();
// Call the `foo' function with no arguments: std::vector<GenericValue> noargs; GenericValue gv = EE->runFunction(FooF, noargs);
// Import result of execution: outs() << "Result: " << gv.IntVal << "\n"; delete EE; llvm_shutdown(); return 0; }
%{ #include "Model/nodes.h" #include <list> using namespace std;
#define YYERROR_VERBOSE 1
Node *programBlock; /* the top level root node of our final AST */
extern int yylex(); extern int yylineno; extern char* yytext; extern int yyleng;
void yyerror(const char *s);
%}
/* Represents the many different ways we can access our data */
%union { Node *nodes; char *str; int token; }
/* Define our terminal symbols (tokens). This should
match our tokens.l lex file. We also define the node type
they represent.
*/
%token <str> ID INTEGER DOUBLE %token <token> CEQ CNE CGE CLE MBK %token <token> '<' '>' '=' '+' '-' '*' '/' '%' '^' '&' '|' '~' '@' %token <str> STRING CHAR %token <token> IF ELSE WHILE DO GOTO FOR FOREACH %token <token> DELEGATE DEF DEFINE IMPORT USING NAMESPACE %token <token> RETURN NEW THIS %token <str> KWS_EXIT KWS_ERROR KWS_TSZ KWS_STRUCT KWS_FWKZ KWS_FUNC_XS KWS_TYPE
/* Define the type of node our nonterminal symbols represent. The types refer to the %union declaration above. Ex: when we call an ident (defined by union type ident) we are really calling an (NIdentifier*). It makes the compiler happy. */
Node* Node::make_list(int num, ...) { va_list argp; Node* para = NULL; Node* ans = NULL; va_start( argp, num ); for (int i = 0; i < num; ++i) { para = va_arg( argp, Node* ); if (!para->isSingle()) para = new Node(para); if ( ans == NULL ) ans = para; else ans->addBrother(para); } va_end( argp ); return ans; }
Node* Node::getList(Node* node) { if (!node->isSingle()) return new Node(node); return node; }
void Node::addBrother (Node* n) { Node* p = this; while (p->next != NULL) { p = p->next; } p->next = n; }
void Node::print(int k) { for (int i = 0; i < k; ++i) printf(" "); printSelf(); printf("\n");
Node* p = child; int t = 0; while (p != NULL) { p->print(k+1); p = p->next; ++t; } if (t >= 3) printf("\n"); }
void Node::printSelf() { printf("Node"); }
NodeType Node::getType() { return node_t; }
bool Node::isSingle() { return next == NULL; }
Node* Node::make_list(int num, ...) { va_list argp; Node* para = NULL; Node* ans = NULL; va_start( argp, num ); for (int i = 0; i < num; ++i) { para = va_arg( argp, Node* ); if (!para->isSingle()) para = new Node(para); if ( ans == NULL ) ans = para; else ans->addBrother(para); } va_end( argp ); return ans; }
Node* Node::getList(Node* node) { if (!node->isSingle()) return new Node(node); return node; }