Machine IR (MIR) Format Reference Manual¶
警告
This is a work in progress.
Introduction¶
This document is a reference manual for the Machine IR (MIR) serialization format. MIR is a human readable serialization format that is used to represent LLVM’s machine specific intermediate representation.
The MIR serialization format is designed to be used for testing the code generation passes in LLVM.
Overview¶
The MIR serialization format uses a YAML container. YAML is a standard data serialization language, and the full YAML language spec can be read at yaml.org.
A MIR file is split up into a series of YAML documents. The first document can contain an optional embedded LLVM IR module, and the rest of the documents contain the serialized machine functions.
MIR Testing Guide¶
You can use the MIR format for testing in two different ways:
- You can write MIR tests that invoke a single code generation pass using the
run-pass
option in llc. - You can use llc’s
stop-after
option with existing or new LLVM assembly tests and check the MIR output of a specific code generation pass.
Testing Individual Code Generation Passes¶
The run-pass
option in llc allows you to create MIR tests that invoke
just a single code generation pass. When this option is used, llc will parse
an input MIR file, run the specified code generation pass, and print the
resulting MIR to the standard output stream.
You can generate an input MIR file for the test by using the stop-after
option in llc. For example, if you would like to write a test for the
post register allocation pseudo instruction expansion pass, you can specify
the machine copy propagation pass in the stop-after
option, as it runs
just before the pass that we are trying to test:
llc -stop-after machine-cp bug-trigger.ll > test.mir
After generating the input MIR file, you’ll have to add a run line that uses
the -run-pass
option to it. In order to test the post register allocation
pseudo instruction expansion pass on X86-64, a run line like the one shown
below can be used:
# RUN: llc -run-pass postrapseudos -march=x86-64 %s -o /dev/null | FileCheck %s
The MIR files are target dependent, so they have to be placed in the target specific test directories. They also need to specify a target triple or a target architecture either in the run line or in the embedded LLVM IR module.
Limitations¶
Currently the MIR format has several limitations in terms of which state it can serialize:
- The target-specific state in the target-specific
MachineFunctionInfo
subclasses isn’t serialized at the moment. - The target-specific
MachineConstantPoolValue
subclasses (in the ARM and SystemZ backends) aren’t serialized at the moment. - The
MCSymbol
machine operands are only printed, they can’t be parsed. - A lot of the state in
MachineModuleInfo
isn’t serialized - only the CFI instructions and the variable debug information from MMI is serialized right now.
These limitations impose restrictions on what you can test with the MIR format.
For now, tests that would like to test some behaviour that depends on the state
of certain MCSymbol
operands or the exception handling state in MMI, can’t
use the MIR format. As well as that, tests that test some behaviour that
depends on the state of the target specific MachineFunctionInfo
or
MachineConstantPoolValue
subclasses can’t use the MIR format at the moment.
High Level Structure¶
Embedded Module¶
When the first YAML document contains a YAML block literal string, the MIR parser will treat this string as an LLVM assembly language string that represents an embedded LLVM IR module. Here is an example of a YAML document that contains an LLVM module:
--- |
define i32 @inc(i32* %x) {
entry:
%0 = load i32, i32* %x
%1 = add i32 %0, 1
store i32 %1, i32* %x
ret i32 %1
}
...
Machine Functions¶
The remaining YAML documents contain the machine functions. This is an example of such YAML document:
---
name: inc
tracksRegLiveness: true
liveins:
- { reg: '%rdi' }
body: |
bb.0.entry:
liveins: %rdi
%eax = MOV32rm %rdi, 1, _, 0, _
%eax = INC32r killed %eax, implicit-def dead %eflags
MOV32mr killed %rdi, 1, _, 0, _, %eax
RETQ %eax
...
The document above consists of attributes that represent the various properties and data structures in a machine function.
The attribute name
is required, and its value should be identical to the
name of a function that this machine function is based on.
The attribute body
is a YAML block literal string. Its value represents
the function’s machine basic blocks and their machine instructions.
Machine Instructions Format Reference¶
The machine basic blocks and their instructions are represented using a custom, human readable serialization language. This language is used in the YAML block literal string that corresponds to the machine function’s body.
A source string that uses this language contains a list of machine basic blocks, which are described in the section below.
Machine Basic Blocks¶
A machine basic block is defined in a single block definition source construct that contains the block’s ID. The example below defines two blocks that have an ID of zero and one:
bb.0:
<instructions>
bb.1:
<instructions>
A machine basic block can also have a name. It should be specified after the ID in the block’s definition:
bb.0.entry: ; This block's name is "entry"
<instructions>
The block’s name should be identical to the name of the IR block that this machine block is based on.
Block References¶
The machine basic blocks are identified by their ID numbers. Individual blocks are referenced using the following syntax:
%bb.<id>[.<name>]
Examples:
%bb.0
%bb.1.then
Successors¶
The machine basic block’s successors have to be specified before any of the instructions:
bb.0.entry:
successors: %bb.1.then, %bb.2.else
<instructions>
bb.1.then:
<instructions>
bb.2.else:
<instructions>
The branch weights can be specified in brackets after the successor blocks. The example below defines a block that has two successors with branch weights of 32 and 16:
bb.0.entry:
successors: %bb.1.then(32), %bb.2.else(16)
Live In Registers¶
The machine basic block’s live in registers have to be specified before any of the instructions:
bb.0.entry:
liveins: %edi, %esi
The list of live in registers and successors can be empty. The language also allows multiple live in register and successor lists - they are combined into one list by the parser.
Miscellaneous Attributes¶
The attributes IsAddressTaken
, IsLandingPad
and Alignment
can be
specified in brackets after the block’s definition:
bb.0.entry (address-taken):
<instructions>
bb.2.else (align 4):
<instructions>
bb.3(landing-pad, align 4):
<instructions>
Machine Instructions¶
A machine instruction is composed of a name, machine operands, instruction flags, and machine memory operands.
The instruction’s name is usually specified before the operands. The example
below shows an instance of the X86 RETQ
instruction with a single machine
operand:
RETQ %eax
However, if the machine instruction has one or more explicitly defined register
operands, the instruction’s name has to be specified after them. The example
below shows an instance of the AArch64 LDPXpost
instruction with three
defined register operands:
%sp, %fp, %lr = LDPXpost %sp, 2
The instruction names are serialized using the exact definitions from the
target’s *InstrInfo.td
files, and they are case sensitive. This means that
similar instruction names like TSTri
and tSTRi
represent different
machine instructions.
Instruction Flags¶
The flag frame-setup
can be specified before the instruction’s name:
%fp = frame-setup ADDXri %sp, 0, 0
Registers¶
Registers are one of the key primitives in the machine instructions serialization language. They are primarly used in the register machine operands, but they can also be used in a number of other places, like the basic block’s live in list.
The physical registers are identified by their name. They use the following syntax:
%<name>
The example below shows three X86 physical registers:
%eax
%r15
%eflags
The virtual registers are identified by their ID number. They use the following syntax:
%<id>
Example:
%0
The null registers are represented using an underscore (‘_
’). They can also be
represented using a ‘%noreg
’ named register, although the former syntax
is preferred.
Machine Operands¶
There are seventeen different kinds of machine operands, and all of them, except
the MCSymbol
operand, can be serialized. The MCSymbol
operands are
just printed out - they can’t be parsed back yet.
Immediate Operands¶
The immediate machine operands are untyped, 64-bit signed integers. The
example below shows an instance of the X86 MOV32ri
instruction that has an
immediate machine operand -42
:
%eax = MOV32ri -42
Register Operands¶
The register primitive is used to represent the register machine operands. The register operands can also have optional register flags, a subregister index, and a reference to the tied register operand. The full syntax of a register operand is shown below:
[<flags>] <register> [ :<subregister-idx-name> ] [ (tied-def <tied-op>) ]
This example shows an instance of the X86 XOR32rr
instruction that has
5 register operands with different register flags:
dead %eax = XOR32rr undef %eax, undef %eax, implicit-def dead %eflags, implicit-def %al
Register Flags¶
The table below shows all of the possible register flags along with the
corresponding internal llvm::RegState
representation:
Flag | Internal Value |
---|---|
implicit |
RegState::Implicit |
implicit-def |
RegState::ImplicitDefine |
def |
RegState::Define |
dead |
RegState::Dead |
killed |
RegState::Kill |
undef |
RegState::Undef |
internal |
RegState::InternalRead |
early-clobber |
RegState::EarlyClobber |
debug-use |
RegState::Debug |
Subregister Indices¶
The register machine operands can reference a portion of a register by using
the subregister indices. The example below shows an instance of the COPY
pseudo instruction that uses the X86 sub_8bit
subregister index to copy 8
lower bits from the 32-bit virtual register 0 to the 8-bit virtual register 1:
%1 = COPY %0:sub_8bit
The names of the subregister indices are target specific, and are typically
defined in the target’s *RegisterInfo.td
file.
Global Value Operands¶
The global value machine operands reference the global values from the
embedded LLVM IR module.
The example below shows an instance of the X86 MOV64rm
instruction that has
a global value operand named G
:
%rax = MOV64rm %rip, 1, _, @G, _
The named global values are represented using an identifier with the ‘@’ prefix. If the identifier doesn’t match the regular expression [-a-zA-Z$._][-a-zA-Z$._0-9]*, then this identifier must be quoted.
The unnamed global values are represented using an unsigned numeric value with
the ‘@’ prefix, like in the following examples: @0
, @989
.